PSYC3052A/B: Advanced Social Psychology
Course Outline (2021-2 Autumn Semester)

Syllabus URL: https://mgto.org/hku2021psyc3052

Course materials/lectures are shared on the Open Science Framework
Class lectures YouTube playlist

Lectures:
● Section 3052B: Tuesday 16:30 - 18:20; CPD-LG.09 [Zoom]
● Section 3052A: Wednesday 10:30 – 12:20; CPD-LG.08 [Zoom]

[you’re also welcome to visit PSYC2071 Thursday 16:30 – 18:20; CPD-LG.34 | Syllabus | Zoom]

Tutorials (combined for PSYC3052A/B and PSYC2071):
● Tuesday 9:30 - 11:20. (CPD2.47 [9:30 - 10:20]; CPD2.38 [10:30 - 11:20])
● Thursday 9:30 - 11:20. (CPD-LG.16)

Tutorial registration starts on September 8th, 9am and ends on September 13th, 12 pm.

Note. This semester’s tutorial sessions will be drop in Q&A sessions. The tutorials listed in the schedule have been recorded last semester and are available to view here.

Please ask all course/syllabus related questions on our Slack (channel: #questionsaboutcourse).

Open communications: Please use public Slack channels and tag us (using @), avoid Direct Messaging staff. We will answer it all there for all to see and learn.

Please only email the instructor when there are personal issues that relate only to you.

Contact details

Instructor: Gilad (Fili) FELDMAN
Office: Jockey Club Tower 6.22
Hours: Wednesday, 15:30-16:30 (email first)
Email: gfeldman@hku.hk

Tutor: Kristy CHOW
Office: Jockey Club Tower 6.18
Hours: By appointment

Supporting tutor: Katy Yuen Yan TAM
Office: Jockey Club Tower 6.77
Hours: By appointment

Supporting tutor: Devin Zaixuan ZHANG
Office: Jockey Club Tower 6.49
Hours: By appointment
Course Objectives

The purpose of this course is for students to gain an in-depth understanding of the recent developments in psychological science through the lens of social psychology.

After taking this course, students will:

1. Understand the recent developments in psychological science and the science reform (coined “credibility revolution”) open-science movement.
2. Gain an academic overview of main research themes in social-psychology.
3. Summarize, analyze, reflect, and apply classic experiments and findings in social-psychology.
4. Articulate process and findings, both orally and in writing, with discussion of evidence and its implications for the academic field and in everyday life.
5. Experience and lead, hands-on, high-quality academic research using the most recent methodological advances in psychological science conducting a pre-registered replication and extension of a classic study in social-psychology.
 a. In-depth analysis of a published academic article
 b. Assessment of experimental scientific methods and evidence (effect-size, confidence-intervals, power, and p-values)
 c. Pre-registration plan
 d. Data analysis
 e. Registered Report Stage 1 (as an academic submission)

Learning Outcomes

1. Understanding and implementing open-science.
2. Achieve an in-depth understanding of challenges and potential remedies to the ongoing science crisis.
3. Gain knowledge and reflect on academic findings in social-psychology.
4. Gain overall broad understanding of several research streams in social-psychology.
5. Develop ability to contemplate and analyze social-psychology academic research.
6. Exercise critical mindset and basic skills in interpreting and communicating research reports.
7. Understand and conduct a pre-registered replication and extension of simple classic experiments in social-psychology.
8. Coordinate and cooperate with other students to achieve common academic goals and successfully conclude academic projects.
9. Write high-quality publishable research articles and communicate research findings in presentations.
Things you should check carefully before joining this course

1. [Gilad’s teaching materials from previous years](#) are available for you to learn from.
2. [Gilad’s teaching portfolio](#) summarizes teaching philosophy and teaching journey since 2018.
3. [Gilad’s teaching evaluations](#) are available for you to understand how students evaluated me and my courses ([raw evaluations and feedback](#)).
4. This course takes part in the [mass replications and extensions project](#). The [project webpage](#) includes Gilad’s videos explaining how we run research projects in this course.

Reasons why you should NOT take this course

1. If you dislike or are skeptical/cynical about psychology, you may not like this class.
2. If you're looking for an easy course. Be warned, this is a very demanding course, and we will work under very strict criteria of establishing scientific evidence requiring high-level of scientific understanding and thinking.
3. If you think psychology is a "soft science" or "intuitive" and/or that psychology classes are "easy classes", then you're in for a surprise. This will require a scientific mind and adhering to the most up-to-date scientific standards.
4. If you do not care about academic research or are hesitant or reluctant to conduct academic research. This is an advanced research undergraduate course that aims to introduce you to the scientific understanding of social psychology, and this will involve conducting state-of-the-art research projects. We will provide you with resources and examples, and aid you in the project, but it will depend on your ability to do research to get an in-depth understanding of the human mind from a critical academic perspective.
5. If you prefer passive learning, if you do not like self-study, or if you expect learning to originate only from the instructor. I will guide you, provide support and assistance, but learning in this course is student focused and student driven. It will depend on you conducting self-study and pushing yourself to master needed skills, fully engage in academic thinking, and do the required work.
6. If you need high structure and do not tolerate uncertainty. There will be uncertainty in this course, and things will not always be clear upfront. It will be up to you to raise questions, seek help, and overcome difficulties as they arise. I will do whatever I can to support you, but I am joining you in this journey with no certainty of how this journey will turn out or what the outcome will be.
7. If you dislike quantitative research and have an aversion to statistics. Academic research in psychology requires basic understanding of statistics and I will assume that you have mastered the basics of statistics and are capable of mastering further needed skills given guidance.
8. If you do not believe in scientific openness and transparency. We will live by the principles of open-science.
Things to consider about the course

1. To give you a heads-up, for you to determine if there’s a fit and to address any possible future misunderstandings - **this is a very demanding research-focused course requiring in-depth readings on social psychology with a very comprehensive academic research course project.**

2. Everything we do in this course, everything (reports, presentations, class notes, etc.), will be shared not only to your TA and instructor, but also to all your classmates, and the entire world. **Everything we do will be shared with the academic community on the Open-Science Framework.**

3. If you took other courses about judgment and decision making (e.g., CCST9027 "Science of Irrational Thinking"), you may find some of the course context repeating some of the themes and experiments covered. Since this is an advanced class, we aim to build on and extend beyond that course, but some content is likely to overlap. If you did take that course, please inform our TA.

4. If you took my previous courses about social psychology (e.g., PSYC2020 "Fundamentals of Social Psychology"), you may find some of the course context repeating some of the themes and experiments covered. Since this is an advanced class, we aim to build on and extend beyond that course, but some content is likely to overlap. If you took that class with another instructor, no worries, overlap is likely going to be minimal. If you did take that course, please inform our TA.

5. The assignments in this course are not directly related to the teaching. There is a deliberate disconnect between the class lectures and the course assignments. The group/team work is problem based hands-on student learning, where you embark on your own journey with our assistance and guidance, and the support for your projects are given in the tutorials. The lectures are meant to provide you some of the latest up to date information through engagement. In the classroom I want you to be open to learn, participate, try things, without having to worry about which parts I will test you on and what will or will not be on an exam. If you’re in the class, I want you to want to be there, to experience and to learn.
Teaching Philosophy

Teaching principles

This course is based on a teaching philosophy that is a bit different from other courses at HKU. Based on my experience with Problem Based Learning, I set the following principles for my courses:

1. **Student-led**: Students seek out answers and solutions.
2. **Learning by doing**: Students engage with science hands-on.
3. **Impact**: Students do projects that are potentially publishable and of real impact.
4. **Scientific process and mindset**: Students experience the entire scientific process. Providing and receiving peer review, working collaboratively, writing and following pre-registrations, etc.
5. **Best practices**: Students use the latest tools/trends in psychological science.
6. **Up-to-date knowledge**: No outdated unverified findings. Focus on recent verified articles.
7. **Collaboration, learning, and open-science, not memory**: Grading is based on ability to work well with others, learn and improve from feedback, and implement open-science principles.
8. **Community engagement**: Connect between the students and the community, by inviting the community to work with students, provide them with feedback, and forming collaborations.
9. **Open-science**: Complete transparency, sharing everything openly and publicly
 - a. Everything we do in the courses is shared with the academic community and the world.
 - b. Embracing trustworthiness and error finding/correction. Science is messy, mistakes are natural and part of the process. We do our best to find errors, acknowledge and understand issues, and reflect and learn from them. Others help us do better.

Why am I teaching this way?

See the following references:

Why are we doing replications and extensions Registered Reports in this course?

If you're not sure you understand the point of conducting pre-registered replication in undergraduate classes, then I suggest a few readings on the topic.

- Teaching Replication in Psychology: A Guide for Teachers and Students. (OSF project)
- Collaborative Replications and Education Project (CREP)
- Listen to the student’s perspective: Open Science Talk podcast session on student's perspective on Open Science – and specifically replication studies. With Kristoffer Klevjer.

About replications

If you wish to see me explain this in depth, then there are recorded video lectures about me explaining open science and what we are doing at University of Hong Kong, see my webpage about Open Science.
Structure

Students will form groups (2 students) and two groups will form a team (overall, 4 students). This team will work together on the following:

1. **Registered Replication Report (RRR) assessment**: Read, analyze, summarize, and present a RRR (list below).
2. **Replication and extension Registered Report Stage 1**: Teams of 2 groups will work on a replication and extension Registered Report Stage 1 science project. Each of the two groups will work separately and independently to complete a project (see “projects” below for info), and the two groups will peer-review one another and present together. The groups will, however, do the final presentations together. The separate work is important so that the two teams can then check each other to find possible flaws, help each other improve, and suggest different extensions.
3. **Cognitive constraints in Science: Review piece**: Write a manuscript aimed to discuss how social psychology and judgment decision making can help open/meta science and improve psychological science.

Assessment Components

1. Team/group work: (team score) 10%
 a. Contract 5%
 b. Team work report - reflecting on your work versus contract 5%
2. RRR assessment (team score) 20%
 a. RRR peer-review: 5%
 b. RRR group report: 15%
3. Replication and extensions projects: (group score) 40%
 a. Replication and extensions Registered Report Stage 1 report - Part 1: 15%
 b. Replication and extensions Registered Report Stage 1 report - Part 2: 15%
 c. Replication and extensions peer review: 10%
 d. [note: The scoring of the parts refers to the sections included in these two parts. Part 2 is Final report minus Part 1]
4. Replication and extensions projects: (team score) 5%
 a. Replication and extensions Registered Report Stage 1 class presentation: 5%
5. Cognitive constraints in Science: Review piece (team score) 25%
 a. Guide/opinion piece peer review: 5%
 b. Guide/opinion piece report 15%
 c. Guide/opinion piece presentation 5%

Notes:

- All submissions in this course have two stages, initial submission on which you will receive feedback and peer review, and final submission after revision. First drafts fulfilling all instructions are mandatory, not submitting a full draft will receive a fail grade, they are not graded. Grading will take place only on the final revised submissions. When grading the final submission we will examine that you have done the best you could in your initial submission and will examine how you improved in your final submission based on feedback.
- Contributions to the course summary will be awarded 2 bonus points to their replications project (40%). Top 2 contributors will be awarded 5 points to their replications project (40%).
Schedule

<table>
<thead>
<tr>
<th>Cl</th>
<th>Date</th>
<th>Topic</th>
<th>TA</th>
<th>Tasks due end of week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A:01/09</td>
<td>Introduction lecture #1 Science under crisis - understanding the crisis</td>
<td></td>
<td>Signup for HKU Qualtrics account: https://hku.qualtrics.com/</td>
</tr>
<tr>
<td></td>
<td>B:07/09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A:8/09</td>
<td>Introduction lecture #2 Course outline Reasons for crisis + Stats intro</td>
<td></td>
<td>Deadline 12/09 11:59pm: MANDATORY for course enrollment: Complete quiz on the syllabus and open-science lecture</td>
</tr>
<tr>
<td></td>
<td>B:14/09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A:15/09</td>
<td>Introduction lecture #3: Registered Reports Assessing science</td>
<td>T1 Science assessment task</td>
<td>Deadline 26/9 11:59pm: Group and team collaborative work ground rules contract. See here.</td>
</tr>
<tr>
<td></td>
<td>B:21/09</td>
<td>(Note: 22/09 is a public holiday, no class for PSYC3052A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B-A: 28-29/09</td>
<td>Improving psychological science Books: Science Fictions 7 Deadly Sins of Psychology</td>
<td>T2 Effect size and power analysis Fili’s workshops - Pre-registration and Registered Reports</td>
<td>Deadline 3/10 11:59pm: RRR Assessment report submission</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>B-A: 05-06/10</td>
<td>Factfulness: Why we might be wrong about the world Books: Factfulness Enlightenment now The power of bad</td>
<td>T3 Research design: Replications and extensions</td>
<td>Deadline 10/10 11:59pm: RRR Assessment peer review</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B-A: 12-13/10</td>
<td>Reading week No class</td>
<td></td>
<td>Deadline 17/10 11:59pm: RRR Assessment final submission</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>B-A: 19-20/10</td>
<td>Biases and our understanding of the world and science Books: Thinking fast and slow The improbability principle</td>
<td>T4 Qualtrics survey best practices</td>
<td>Deadline 24/10 11:59pm:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>B-A:</td>
<td>Topic</td>
<td>T5/T6:</td>
<td>Deadline</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>--</td>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>9</td>
<td>02-03/11</td>
<td>Unethicality</td>
<td>Guide/primer/opinion task tutorial</td>
<td>7/11 23:59pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Books:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Honest truth about dishonesty</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Better, not perfect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>09-10/11</td>
<td>Morality</td>
<td>T6 (open tutorial TBD)</td>
<td>14/11 23:59pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Books:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The righteous mind</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Better, not perfect</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Kindness of Strangers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>16-17/11</td>
<td>Agency: Self, Morality, and Free Will</td>
<td></td>
<td>21/11 23:59pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Books:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Righteous Mind</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Better, not perfect</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Kindness of Strangers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>23-24/11</td>
<td>Improving Science: People and projects that promote better science</td>
<td></td>
<td>29/11 11:59pm: Review submission</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Books:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Righteous Mind</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Better, not perfect</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Kindness of Strangers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>30/11</td>
<td>B: TBD</td>
<td></td>
<td>05/12 11:59pm: Review piece peer review submission</td>
</tr>
<tr>
<td>A: 01/12</td>
<td></td>
<td>A: No class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>07-08/12</td>
<td>No class / instructor & tutor help</td>
<td></td>
<td>12/12 11:59pm:</td>
</tr>
<tr>
<td>15</td>
<td>14-15/12</td>
<td>No class</td>
<td></td>
<td>19/12 11:59pm: Replication + Extension Part 2 final revised submission</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Collaboration and resources

Collaborative course summary
All students will work on a collaborative Google Doc summarizing all the readings and class activity:

https://mgto.org/psyc30522021coursesummary

Communication and help

Click on this invite link to join the course Slack channel.

You can use this Slack workspace to discuss topics with other students, and ask TA and instructor questions about the projects/tasks. Emails should be reserved for personal issues only. This way, all students can see all help provided to all others, and can help one another do better.

Submissions and communications: Your name

In all your submission, on Slack, and in all communications with me and the TA, please write your name in the following format:

[Given name] [English nickname] [SURNAME/FAMILY NAME]

For example, my given name is Gilad, my preferred nickname is Fili, and my last name is Feldman, therefore:

Gilad Fili FELDMAN

or, similarly,

Kin Fai Ellick WONG

(where Kin Fai is the given name, Ellick is the nickname, and Wong is the family name)

This is meant to avoid any possible confusion/misattributions because Cantonese names are typically writing surname family names first, with given-names last composed of two words, which is different from the academic standard for names of given names first and surnames last.
Group and Team projects: General note

Team Contract

Please use our team contract template: https://mgto.org/teamcontracttemplate

Group and team collaborative work is one of the most important elements in this course. It is expected that all members contribute equally. I take issues of free riding and social loafing very seriously.

Therefore, by week 3 and the formation of teams and groups, the teams will set ground contract rules on how the group/team will work. The document will cover your group contract agreement regarding communications (medium, expected responsiveness, etc.), conduct of meetings (frequency/format/etc.), and decision-making (including allocation of the various tasks which together comprise the project work).

Please:

1. Take into account the different times of the semester and workload, and ensure that these rules are upheld regardless of circumstances.
2. Keep a record of all team/group communications, meeting times, who attended, who did what in which project, etc. We will want to see how the group/team worked together, especially in cases where there are doubts regarding the possible contribution of one of the members.
3. All free riding and social loafing issues should be brought up with the assigned teaching assistant as soon as they occur so that we can intervene and ensure quality group work. You are not expected to carry your classmates on your back. This should be part of your team contract, with clear steps to address these.

Team contract structure:

1. Ground rules. Make those as specific and as practical as possible.
2. Team/Group roles: Who is in charge of what? Separate that to the different tasks.
3. Conduct a premortem using prospective hindsight: Expect in advance what might fail, and create a plan to address it in advance.
4. Create a plan on how you will tackle each of the assignment deadlines together.

Team Work Report: Reflecting on your work versus contract

At the end of the semester you are asked to reflect and report how well your team did in reference to the work contract.

Topics:

1. What went well? What did not go well? Specify, rank, and rate the challenges and successes.
2. How did each member do individually? What were the strengths and weaknesses of each member? How could each member improve?
3. How did the team/group do together overall? What to keep? How to improve?
4. What were you able to anticipate? What couldn’t you? Why?
5. What did you learn? How would you improve in your next group project?
6. What implications are there for your future careers?
7. What would you recommend for other groups in future courses?
8. What would you recommend to the instructor / teaching assistants / company running groups?

Finally (and we will take this into consideration when grading your work):

1. What grade would you give each of the members for each of the tasks (agreed together).
2. Why?
Peer evaluations impact on grade

The project score that you will finally receive is the product of the score the grader gives to your group project multiplied by the total percentage points (adjusted to be within the range of 80% to 120%) you receive from your group members. Those who the group indicated did not contribute to the team’s task will receive a failing grade on that task.

Communicating and addressing free-riding

If you encounter free-riding, please do not wait until the situation escalate and address the situation immediately by:

1. Address your concerns with that group member as early as possible via email, and copy the teaching assistant in charge of your group/team on your email.
2. Agree upon a way in which that person can contribute to the group and notify the teaching assistant in charge of your group/team of your joint resolution by email.
3. If the problem persists, make an appointment for your group to meet with the teaching assistant in charge of your group/team. We will attempt to resolve the problem together.
4. If this second attempt fails, and you have followed the above steps, please communicate this immediately to the instructor. I will make a decision on the type of action to be taken. Identified free-riding will likely result in a zero on the group/team assignments.
Group projects: Replications and extensions

Stage 1 Registered Report

Important resources/links for your projects:

1. Cloud drive: Materials for the projects
2. Collaborative guide: Pre-registered replication project
3. Collaborative guide: R/JAMOVI/JASP
4. Collaborative guide: Designing extensions guide
5. Collaborative guide: Effect size, confidence intervals, and power analyses guide.
6. Collaborative guide: Peer review
7. Collaborative guide: Qualtrics
8. HKU mass replication project webpage
9. Updating the academic community about our replication projects (ResearchGate)

Students will conduct replication and extension Stage 1 Registered Report of classic findings in social psychology or judgment and decision-making. Students will be randomly assigned an experiment in a classic article and will follow a structured procedure to attempt a replication with a simple extension.

Each classic article will be the target replication article for two groups of two students (henceforth: team. Please note: group = 2 students, team = 2 groups). Each group will work independently on the same article without any information-sharing or collaboration with the other group in the team. This method will be used to educate students about different perspectives on conducting replication and analysis of the same article. The two groups will peer review one another's work, and will use the process to improve on their own work. The idea is not to have identical outputs, but for each of the students to do the best they can on their own and then compare their own approach to that by the other student.

The students are responsible for designing a replication Qualtrics survey, analyzing the article, writing the pre-registration plan, conducting the data analysis on randomly generated dataset, writing a Registered Reports Stage 1, and presenting their projects.
Project process outline

Part 1: Qualtrics survey + RR
Introduction (target article analysis) (effects + power)

Randomly generated dataset data analysis code

Part 2: Full introduction.
Methods + Results of data analysis plan on randomly generated dataset

Registered Report first draft

External feedback
Peer review

Pre-testing

Registered Report Final submission

Guide
Blue: Students
Green: Peers/classmates
Orange: External review
Red: Pretesting by classmates
Replication + extension submissions

In each team there are two groups working independently on the same target article. Each group is assigned to a Google Doc based on the replication + extensions template. All work should be conducted on the Google Docs assigned to the group, in all stages. Please do not make duplicates or work on anything outside of the assigned Google Docs.

Part 1 submission should include:
1. Google Docs sections
 a. Introduction:
 i. Sections
 1. Choice of study for replication
 2. Original hypotheses and findings in target article
 3. Exploratory directions (optional)
 4. Extensions
 5. Overview of replication + extension
 ii. Which includes (also in supplementary)
 1. Target article analysis.
 2. Effect sizes + confidence intervals calculations + power analysis
 2. In addition
 a. Qualtrics survey document export (Word DOCX file with all options checked)
 b. Qualtrics survey QSF file.

Part 2 should include:
3. Google Docs sections
 a. Introduction: All sections, all that’s in Part 1 + all other sections
 b. Methods: All sections
 c. Results: All sections based on randomized dataset generated from Qualtrics
4. In addition
 a. Qualtrics survey document export (Word DOCX file with all options checked)
 b. Qualtrics survey QSF file.
 c. Raw datasets generated from Qualtrics. Full
 d. Analysis, either:
 i. Analyzed datasets in JAMOVI (OMV files)
 ii. R code + output from running the R code
Adding extensions to replications

Groups are expected to design extensions on the replications. How? see Collaborative guide: Designing extensions guide for more detail.

Sharing and open science

The core elements of good science are **openness, transparency, and community**. By opening up our research in terms of process, materials, data, analysis, and conclusions, and by sharing our thought process with others in the scientific community, we are promoting learning and cooperation and we increase the chances of conducting high-quality research. Some researchers, and possibly students, may feel reluctant to share their outputs, either because they feel shy, lack confidence, or are possessive of their own materials. In our projects, I ask that you join me in overcoming this mentality in the name of science and learning. By opening up and sharing what we do, we can help each other learn and maximize the potential of our projects.

All your work will be shared with others. First, with your fellow students, and finally with the rest of the academic community. The TAs and instructor will do their best to work together with you to result in the highest quality outputs.
Academic journal submission and coauthorship

Our goal with this project is to share our insights with the academic community. The formalized way of doing that is summarizing the findings in a manuscript, publishing this as a pre-print, and submitting that as coauthored work to a journal for peer-review. We will aim your projects to become a journal submission to publicize the results of your hard-work. Unless there are unexpected issues, the plan is for all of the student work in this course to be submitted as academic manuscripts, meaning that - by default - you will be coauthors, as determined by the instructors based on level of contribution. You may decide not to join as coauthors or not to have your work included in a journal submission, but in such a case you must communicate that to the instructor early on and indicate this clearly on your reports.

Meaning, that by taking this course and taking part in this project you agree to have your work shared with the academic community and the public, and to be a coauthor on a submission based on your work. If you wish to withdraw from that, then please indicate clearly in ALL your submissions that you do not want to be a coauthor in a journal article submission based on your work or do not wish for your projects to be included in a journal submission.

Can student reports really be published? Yes! Please visit our main page to see the status of publishing the reports from previous years. At the end, we hope that all students’ work will end up in academic journals. Even for those that will not, they will be shared as preprints and will have citable DOIs. You could and should be proud of this work, and add those to your list of academic achievements.

Analyses

It is strongly recommended that you use **R/Rmarkdown** for all your effect-size calculations and data analyses. R is the future of stats, and is an important skill for you have in the job market will be beneficial for you in the job market beyond academia.

If you don’t know R, that could be a bit challenging, so it is strongly recommended that instead you use **JAMOVI**, which looks a bit like SPSS, much more powerful than SPSS, and is open-source/free and runs on R.

Our TA tutorials will focus on JAMOVI.

See our [JAMOVI collaborative guide with lots of guides/videos/resources](#).

Why choose R:

- **SPSS is dying. It’s time to change.**
- **Popularity of Data Science Software** (a bit outdated, from 2015, but the trend became even stronger in recent years)
- **The Impressive Growth of R**

Resources:

- [JAMOVI / JASP/ R collaborative guide](#)
- [Effect size and CIs calculations / power analyses collaborative guide](#)
- [JAMOVI workshop & resources cloud folder](#)
- [R/Rmarkdown workshop & resources cloud folder](#)
Team final project presentations

[Note on remote semester adjustment:
Presentation will be pre-recorded and shared together with the accompanying PPT. We will edit the videos together and arrange the presentation order randomly. The presentation video should feature the slides in the background, with the person currently speaking in the presentation on the side, just like done in the lecture by the instructor.]

The two groups working to replicate the same target article will present together at the end of the course. They will integrate insights from their independent teams to give an overall analysis on the replicability of the target article.

Each team will have no more than 10 minutes, strictly observed with a timer (I will stop you when time is up, regardless of whether you're done or not). There will be no time for questions from the audience, but I will either comment, ask a question, or add something. All students should have equal time, I strongly recommend you rehearse this and make sure timing and flow is right, and that no one person is over-dominant or unheard.

The presentation should include:

1. Brief overview of the original article main hypothesis, experimental design of the main effect of interest, and findings regarding the main hypothesis. Do try and make this visually attractive and interesting, this is your one chance to explain your article to your audience. (suggested time - 3 min)
2. Brief review of the literature following the target article. What impact has it had? Were there replications? meta-analyses? etc. (suggested time - 1 min)
3. Briefly cover the technical aspects of the replication: calculated effect-size (with confidence intervals), power-analysis, and adjustments made to the experimental design to fit our replication using online samples (MTurk/Prolific). It should mention whether the calculations were the same or different between the students. (suggested time - 3 min)
4. Briefly cover the extension you designed. What are you adding? why? what insights do you hope to get? (suggested time - 2 min)
5. Main challenges and takeaways from the process, things specific about your project that you learned about the original article, pre-registrations and replication process. (suggested time - 1 min)

Additional things to note:

1. This should be a no bla-bla presentation. This needs to be very concise, straight and to the point. There is no time for stories or long explanations. Focus on the bottom line and what's really important, no need for little details, you'll have plenty of space for details in your reports.
2. Anything that you present should include both groups’ analyses together. If there are differences between the two - the differences should be highlighted clearly.
3. Assume your audience knows nothing about your article and only little statistics. Explain things as if you're talking to laypersons. Avoid jargon as much as possible. Clarity is key.
4. Aim for high-level summary slides with little text. Attractive visual displays are far better than text. Do not place text and read off from your slides. Do not assume the audience reads your slides while you talk about something else.
5. Save time. There is NO need to present and/or discuss things you have in common with the rest of the class (replication crisis, sample size, importance of pre-registered replications, what is MTurk, etc.)

Presentation materials used must be submitted, in **PPT/PPTX format**, PDF format is unacceptable unless preapproved by TA/instructor. Please do not use other formats (Prezi, etc.), since they are not editable and cannot be reproduced and used by others, which goes against the principles of sharing and open-science.

Presentation video should be submitted in **MP4 video format in high definition/resolution** which can be shared using a link to any storage/cloud folder. The links should be verified as open for all, by testing access to the links through Incognito mode. Failure to set open permissions properly will result in delays and possible penalty.

Please note: Examples for presentations can be found on the cloud folder (under Presentations/by students).

Students will vote on the best presentation (voting is identified, not anonymous), and presenters of the best presentation will receive a 10% bonus on their presentation grade. Students are not allowed to vote for their own presentation, obviously. In case of a tie, the bonus points will be split between the tied teams.

Peer review

Groups conducting a replication and extension of the same target article will review each other’s work. See our peer review template/guide for these reviews.

Teams will review reports from other teams.

Peer review will follow academic standards for providing positive constructive feedback on ways to improve, and each of the peer reviews will be graded.
Replication Targets 2021-2

Please note: All PDFs with instructions and highlights about what to do are posted on a cloud folder. (it is very possible that the instructor overlooked something here or misunderstood something about designs. you will be the experts on your articles, so please do help us correct this list and ask questions on Slack.)

Altruism/helping
 Study: Experiments 1-3, random order
 Design:
 - Experiment 1 (2 between, t-test)
 - Experiment 2 (2 between, t-test)
 - Experiment 3 (2x2 between, two-way ANOVA)
 Summary:
 - Presence of self—interest in the charitable domain was seen as tainting: People evaluated efforts that realized both charitable and personal benefits as worse than analogous behaviors that produced no charitable benefit.
 Citations: 162
 Tutor: Katy, Kristy
 Supportive guide: Qinyu
 Notes:
 - All stimuli are in the supplementary. Should be pretty straightforward.
 - Extension is optional, since this is already quite complex.

True self
 Study: Experiment 3
 Design: 2x2 between, two-way ANOVA + 2x2+1 ANCOVA with controls.
 Summary:
 - Role of the subjective feeling that one possesses knowledge of one’s true self in meaning in life judgments
 Citations: 262
 Tutor: Katy
 Supportive guide: Qinyu
 Notes:
Cultural/national Identity

 Study:

 Combine Study 1 (rating faces) with Study 2a/b (rating oneself versus others), random order

 Design:

 Study 1: 2x2 within, two-way repeated ANOVA + by own origin
 Study 2a/b: 2 between (Asian versus White origin) * question (within)

 Summary:

 Identity denial - the situation in which an individual is not recognized as a member of an important in-group. Asian Americans are seen as less American than other Americans.

 Citations: 604

 Tutor: Kristy

 Supportive guide: TBD

 Notes:

 We’ll run this once on American MTurkers (Group A) and once on British on Prolific (Group B).
 An extension can simply look at interactions between the different parts, like combining self (Study 2a) versus others (Study 2b). No need for anything too fancy.

Perception of mind

 Study:

 Combine Study 1 with Study 2, random order.

 Design:

 Study 1: Correlational/Survey (32 animals)
 Study 2: 2 Between (independent t-test)

 Summary:

 Many people like eating meat, but most are reluctant to harm things that have minds. The current three studies show that this dissonance motivates people to deny minds to animals

 Citations: 418

 Tutor: Katy

 Supportive guide: Qinyu

 Notes:

 Since Study 1 and 2 are combined, can run Study 2 also on vegetarians and turn this into 2x2
Moralization and disgust

Study: The one main study in the article.
Design:
- Descriptive + 2 Between (veggie health vs veggie moral; independent t-test) + correlations
Summary:
The consequences of moralization with an analysis of differences between health and moral vegetarians. Compared with health vegetarians, moral vegetarians find meat more disgusting, offer more reasons in support of their meat avoidance, and avoid a wider range of animal foods. However, contrary to our prediction, liking for meat is about the same in moral and health vegetarians.

Citations: 589
Tutor: TBD
Supportive guide: Qinyu

Moral responsibility

Study:
- Experiment 2
Design:
- Experiment 2 : 3x2 between (2-way ANOVA)
Summary:
The more an actor was identified with an action, the more likely observers were to assign responsibility to the actor, even when the action was performed under constraints so powerful that no other behavioral option was available.

Citations: 309
Tutor: Kristy
Supportive guide: TBD
Notes:
Intentions and attitudes

 Study: Studies 2 and 3 (random order) (3 builds on Study 1)
 Design:
 - Study 2: 2 between (independent t-test) with 2 within factors (two-way 2x2 mixed ANOVA)
 - Study 3: 2 between (independent t-test)
 Summary:
 - Effects of helper intention on grateful and indebted reactions to a favor. Differences between grateful and indebted emotions.
 Citations: 309
 Tutor: Katy, Kristy
 Supportive guide: TBD
 Notes:
 - Study 2: Recall studies are very tricky with online samples. Need to make sure participants read and understood the instructions (comprehension checks), and followed instructions (exclusions for nonsense answers)

Morality, guilt, and shame

 Study:
 - Study 1.
 - Group A will do a between design of Study 1
 - Group B will do a within design of Study 1 (using analysis style from Study 2)
 Design:
 - Study 1 (Group A): 3x2 between (two-way ANOVA) x 2 between (gender)
 - Study 1 within (Group B): 3x2 within (two-way ANOVA) x 2 between (gender)
 Summary:
 - Shame results more from the public exposure of a transgression or incompetence than guilt does,
 Citations: 599
 Tutor: Kristy
 Supportive guide: TBD
 Note:
 - In this article they run Study 2 as a within design on a different scenario. Instead of Study 2, Groups B will run Study 1 as a within design (and please compare to the analysis in Study 2).
Team Project: Registered Replication Report assessment

Students will work in teams of 4 to work on a Registered Replication Report (RRR). This will include a presentation, and a team report analyzing the replication.

Replication assessment report

Please use our template for your replication assessment reports for your reports. For your group/teams, please make a copy of the template Google Doc, and work on that.

General description of the task (details in the template link above):
A team will assess the quality of a classic article and then the replication we conducted at HKU in the previous semesters. This will involve a hands-on analysis of the replication and reflect on the quality of the target article and the replication. To do that, you will need:
1. The original article
2. The replication article
3. The replication pre-registration, data, and code

Your report and presentation shall cover the following topics (this is for overview purpose only, see details in the template):
1. What is the effect/phenomenon
2. Why was it important to replicate?
3. Why would it replicate?
4. Why wouldn’t it replicate?
5. Quality of the target original article.
6. Quality of the pre-registration.
7. Quality of the replication report.
8. Did it replicate? how do you know?
9. If results differ - which of the two do you find more convincing? why?
10. What can be improved? Provide constructive realistic recommendations to improve on this replication even further.
11. Lessons learned for your own replication. Reflect on what you learned from this replication attempt for your own pre-registered replication projects?

Indicators used to assess the quality of both target article and the replication:
1. Clarity
2. Transparency and open-science
3. Reproducibility
4. Methods rigor
5. Design (does it fit the hypotheses?)
6. Power (calculate power)

Page limit: No longer than 30 pages (1.5 space, 11 font). Preferences for summary/comparison tables and figures over text. Short and concise is strongly encouraged, but this should not come at the expense of comprehensiveness. The limits are set only for the main assessment component of “[Replication article/project]: Replication assessment”. No limit on appendices, intro pages, abstracts, and other added information.
Projects list
Assignment to projects will be done by the end of the add/drop period and finalizing the course student list.

Copies of original articles can be found on our cloud folder.

3 teams for PSYC3052A + 5 teams for PSYC3052B, can select from the following:

1. Pre-registered direct replication and extension of action identification and mind attribution (Kozak et al, 2006) [Thesis by Wong Ting Hin]
2. When ignorance is no excuse: Different roles for intent across moral domains | Young and Saxe (2011): Replication and extension [Thesis by Chan On Ying]
3. Outcome bias in Ethical Judgment: Replication and Extension. Replication and extension of Gino et al. [Thesis by Florence Wan]
7. *Korbmacher, M., *Ching, K., ^*Feldman, G. Both better and worse than others depending on difficulty: Replication of Kruger’s (1999) above and below average effects with extensions further manipulating and measuring abilities' difficulty and extending to a between-subject design. [Preprint]

*note: All these replications are from our HKU team and by our HKU students. Check our work and learn what you can for your own projects.
Team Project: Review piece - Cognitive constraints in Science

Goal
To help the scientific community improve current practices of psychological science, teams will work together to produce a review manuscript that will guide scientists (and us) about possible cognitive biases in the scientific process and how to overcome them.

Team will examine cognitive biases in researchers’ decision-making when conducting academic research through the lens of classic heuristics and biases in judgement and decision-making. Teams will be randomly assigned to a topic, and will follow a provided template for a manuscript on the assigned cognitive bias. Review manuscript template: https://mgto.org/reviewtemplat

Resources and readings
My lectures on the topic (from PSYC3052 in 2020):

- Misunderstanding & misinterpreting statistics - video / slides
- Biases and our understanding of the world and science - video / slides

I demonstrated some biases and their applications live in the following:

- Demonstration of default bias in open-science practices - Pre-registrations and Registered Reports - video / slides
- Demonstration of outcome/hindsight bias - video / slides

We reflected on possible biases in our team’s media posts:

- Overcoming “Inaction Inertia” to Support Open-Science What our “inaction inertia” replication teaches about engaging in open-science - see Psychology Today post.

Recommended lectures/articles on the topic:

1. Dorothy Bishop:
 b. Why scientific reasoning is hard: The role of cognitive constraints in biasing our reasoning - video / slides
 c. The psychology of scientists – The role of cognitive biases in sustaining bad science - video / slides / OSF
 d. Insights from psychology on lack of reproducibility - video / slides
 e. Cognitive biases can lead to poor reproducibility and replicability of science - slides

2. Cognitive Biases that Interfere with Critical Thinking and Scientific Reasoning: A Course Module

3. Cognitive and Human Factors in Expert Decision Making: Six Fallacies and the Eight Sources of Bias

4. The science loop: How cognitive biases contribute to the intellectual entrenchment at the root of junk science

Background and explanation:

Researchers are humans and are constrained by cognitive limitations, which have the potential to and likely affect all stages of the research life-cycle. From literature review, formation of research questions and study design, through data analysis and the presentation of results, to finally journal submission for publication, the review process, and public dissemination and media engagement, researchers engage in a wide array of decisions that are potentially distorted by biases, deviating from objective scientific truth.

Evidence for researchers' cognitive biases dates back to the 1960s and 70s. A classic illustration by Mahoney (1976) was of confirmation bias in which academics tended to review evidence more favorably when it supported their own views. Fischhoff and colleagues in multiple demonstrations in the 1970s demonstrated hindsight bias, the tendency to perceive an event outcome as more probable after being informed of that outcome, distorting perceptions of relevance and importance of the process that led to the outcome. Baron and Hershey (1980) followed soon after with a demonstration of outcome bias, with implications suggesting that - for example - results of experiments impact perceptions of experimenters, such that the an experiment resulting in failed (null findings) may be perceived as less rigorous compared to the same experiment with a successful outcome. Samuelson and Zeckhauser (1988) documented a consistent tendency for people to stick with a previously chosen option when facing multiple alternatives, demonstrating the challenges in adopting change, even when it is needed and/or preferable. Kahneman and Tversky (1969, 1971) demonstrated the fallacy of researchers and statistician experts in “belief in the law of small numbers” ignoring issues of power raised by Cohen (1969). Expert scholars are fooled by randomness and place unwarranted trust in noisy evidence based on small samples clearly not adequately powered to detect the effects of the phenomenon studied. These and many other cognitive biases affect the way researchers assess, evaluate, and communicate academic findings, and combine together to result in distortions and can be directly linked to issues identified in the current replication/reproducibility crisis, such as biased gate-keeping in peer review and publishing (confirmation bias, overconfidence), overreliance on small samples and noisy indicators like p-values (law of small numbers), tendency towards publishing positive results and rejecting null findings (outcome bias), lack of replications (hindsight bias), etc.

The topics for this semester:

- **Outcome bias:**
 - Baron and Hershey (1988)
 - Our replication and extension (student’s report)

- **Hindsight bias:**

- **Fooled by randomness / causation:**

- Misunderstanding statistics: **Insensitivity to sample size**

- Misunderstanding statistics: **Psychology of prediction**

- **Default bias.**
 - Defaults in a choice set affects scientists’ decisions.

- **Status quo bias.**
 - Status quo affects scientists’ decisions.
 - Samuelson and Zeckhauser (1988)

- **Overconfidence.**
False consensus:
○ Perceive own views to be in the consensus.

Inaction Inertia
○ Confirmation Bias
○ Cherry picking evidence that confirm our prior beliefs.
○ Mahoney (1976)
○ Our replication and extension (thesis student’s report)

Omission bias:
○ Misleading through omission \(\rightarrow\) Misleading through paltering \(\rightarrow\) Misleading through commission
(paltering: Stating something that is true, but in a misleading way)
○ Related reading (methods can be adopted/adjusted):

Bias Blind Spot:
○ Others are more biased than me, even when I know about bias blind spot.
○ IV is 2 conditions - self versus others. DV are list of cognitive biases by researchers. Comparison of whether researchers see themselves as less susceptible to cognitive biases than other researchers of the same tenure/background/demographics as they are.

Self interest is overestimated - Actual and assumed self interest:
○ In the way people evaluate replicators, how people evaluate open-science researchers, how open-science researchers evaluate non open-science researchers.
○ People actually do want to do better science. Can adjust our replication.

Normality biases: Social norms
○ Abnormal behavior (compared to descriptive social norms) attributed more regret than normal behavior.
○ Abnormal behavior (compared to injunctive social norms) attributed more regret than normal behavior.

Normality biases: Past behavior (Exceptionality bias)
○ Exceptional behavior (compared to past behavior) attributed more regret than routine behavior.

Normality biases: Expectations
○ Unexpected behavior (*role expectations*) attributed more regret than expected behavior.
○ Unexpected behavior (*situation expectations*) attributed more regret than expected behavior.
Project presentations

Presentation will be pre-recorded and shared together with the accompanying PPT. We will edit the videos together and arrange the presentation order randomly. The presentation video should feature the slides in the background, with the person currently speaking in the presentation on the side, just like done in the lecture by the instructor.

Each team will have no more than 10 minutes, strictly observed with a timer. There will be no time for questions from the audience, but I will either comment, ask a question, or add something. All students should have equal time, I strongly recommend you rehearse this and make sure timing and flow is right, and that no one person is over-dominant or unheard.

The presentations follow the structure of your manuscript, and should include (but not limited to):

1. Brief overview of the phenomenon. Do try and make this visually attractive and interesting, focus on clarity and make it as concrete and as practical as possible.
 (suggested time - 3 min)
2. How does this affect science and scientists?
 (suggested time - 3 min)
3. What can we do to test these biases?
 (suggested time - 2 min)
4. What can we do to overcome these biases?
 (suggested time - 2 min)
Additional things to note:

1. Your target audience is NOT your classmates or the tutors/instructor. Your target audience is someone completely unfamiliar with the course, the guide, and/or your topic.
2. Assume your audience knows very little to nothing about your project, our course, our process, open-science, replications, etc. with possibly a little about basic stats. Explain things as if you're talking to laypersons, like other students from a different field, and/or your family/friends. Avoid jargon as much as possible. Clarity is key.
3. This should be a no bla-bla presentation. This needs to be very concise, straight and to the point. There is no time for stories or long explanations. Focus on the bottom line and what's really important, no need for little details, you'll have plenty of space for details in your reports.
4. Aim for high-level summary slides with little text. Attractive visual displays are far better than text. Do not place text and read off from your slides. Do not assume the audience reads your slides while you talk about something else.
5. Save time. There is NO need to present and/or discuss things you have in common with the rest of the class (replication crisis, what is a bias, what is science, etc.). Focus on your own topic.

Presentation materials used should be submitted, in PPT/PPTX format. PDF format is unacceptable unless preapproved by TA/instructor.

Presentation video should be submitted in MP4 video format in high definition/resolution which can be shared using a link to any storage/cloud folder. The links should be verified as open for all, by testing access to the links through Incognito mode. Failure to set open permissions properly will result in delays and possible penalty.

Please note: Examples for presentations from previous years can be found on - https://mgto.org/hku2020finalprojects
Participation and contribution

Syllabus quiz

The syllabus is an important document for setting expectations between the student and the instructor. It is a must read, and students must read it carefully and indicate agreement to these terms. It is also the final chance for you to make sure that these course sessions align with your expectations. This is a Capstone/elective course, and there are other sessions/instructors/courses, please only take this course if you understand and accept the terms.

Important: All students must complete the syllabus quiz in the first two weeks (three weeks for late arrivals only). Failure to complete the syllabus quiz will result in 20 point deduction.

Tutorial plan and participation

Tutorial participation is optional but highly recommended since you can ask practical questions to help you with your replication projects, which are the largest component in this course.

Tutorials are meant to aid students in their projects. The tutors will be available to provide practical advice and guidance for a successful completion of the course project.

Students who wish to take advantage of the drop in tutorials are expected to come in during the listed hours. If you arrive later than the listed hours, please post your question(s) on Slack or come to the next tutorial instead.

See course schedule for planned tutorials.
Grading details

RRR Assessment

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Excellent</th>
<th>Good</th>
<th>Poor</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content and comprehensiveness</td>
<td>Reflected excellent understanding of project aim/ideas.</td>
<td>Reflected decent understanding of project aim/ideas; Generally great portrayal of phenomenon and discussion. Sufficient information with adequate insights; many good points made. Might or might not have supporting evidence for each claim.</td>
<td>Reflected incomplete understanding of project aim/ideas; Information is confusing; too much or too little information without a clear idea of what evidence to include. Inaccuracy on many of the components.</td>
<td>Did not reflect understanding of project aim/ideas. Mistaken concepts. Points were not made clear; irrelevant evidence.</td>
</tr>
<tr>
<td>Simplicity, conciseness, delivery, use of communication aids</td>
<td>Clear, simple, and concise. Appropriate, varied, and professional communication aids. Excellent juxtaposition of evidence and explanation. Use of visual aids (tabulated results) rather than text.</td>
<td>Mostly simple, clear, and concise. Good utilisation of figures and visual aids (tables, etc.). Professional communication aids, but not varied; may use too many or too few.</td>
<td>Not at all simple, clear, or concise. Minimal use of figures or visual aids (tables). Use of jargon. Communication aids marginally prepared; do not support presentation well.</td>
<td>Overcomplicated or unclear. No figures or visual aids (tables). Overuse of jargon. Communication aids poorly prepared or nonexistent.</td>
</tr>
<tr>
<td>Depth of analysis</td>
<td>Able to give an in-depth and logical analysis based on the evidence of original article and replication. Showed extensive integration of the content of both articles. Provided useful insights for improvements of replication. Verification of data and data analysis of the replication.</td>
<td>Analysis was mostly based on the evidence of the original article and replication. Some useful insights provided.</td>
<td>Analysis was barely based on the evidence of the original article and replication, or on either one without integrating the contents of both. Provided some analyses but are not necessarily in-depth.</td>
<td>Writing is entirely descriptive; simply summarising the articles without provision of in-depth analysis.</td>
</tr>
<tr>
<td>Organisation</td>
<td>Excellent structure. Followed outline strictly, and covered all components. Clearly labeled sections. The writing of the report is smooth, polished and organised; flows well.</td>
<td>Good structure. Generally followed outline, covered most components. Clearly labeled sections. Writing of the report flows smoothly with occasional confusion or rough patches between ideas.</td>
<td>Minimal structure. The outline was minimally followed, and many components were uncovered. Writing of the report is confusing and disorganised in a number of places, disconnected or choppy; take some effort to follow.</td>
<td>Bad structure. Did not follow outline at all, most components were not covered. Writing is to a highly extent disoriented; vague; difficult to understand.</td>
</tr>
<tr>
<td>Style</td>
<td>Did not exceed page limit. Main script and supplementary materials were separated in a sensible way with accurate correspondence. All writing, labels and figures strictly followed APA style.</td>
<td>Minor glitches complying to APA style.</td>
<td>Apparent glitches complying to APA style. Did not observe page limit. Faulty allocation of materials in main/supplementary.</td>
<td>Did not follow APA style. Problematic layout of supplementary or main section.</td>
</tr>
</tbody>
</table>
Replication and extension Registered Report

<table>
<thead>
<tr>
<th>Component</th>
<th>Criteria</th>
<th>Accuracy / Effort (20%)</th>
<th>Open Science: Transparency and open-science/Reproducibility (of process / hypotheses / design / analysis / data / code) (30%)</th>
<th>Clarity / Conciseness / Delivery (20%)</th>
<th>Rigor / Comprehensiveness (30%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualtrics</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplementary (article analysis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data/code sharing</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall (all relevant above aggregated)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What do we mean by the criteria above

1. **Accuracy / Effort** :
 Following guidelines, implementing everything outlined in guides. Understood and analyzed the right things. Followed APA, included all needed tables/figures. Accurate analysis of target original article.

2. **Transparency and open-science/Reproducibility** :
 Inclusion of and reference to open science principles. Replications/reproducibility, pre-registrations, transparency, etc. Included all information about hypotheses/decision process/decisions taken/criteria/tools/methods/analysis-results. explanations of what the conclusions mean, etc. General criteria: I should be able to give this as is to another student and the other student will be able to understand what was done, how, and why.

3. **Clarity / Conciseness / Delivery** :
 Everything is communicated efficiently and clearly. Simplicity (no jargon, straight to the point, no repetitiveness, etc.). Quality of table and figures. Structure, flow of arguments

4. **Rigor / Comprehensiveness**:
 All items in the guidelines have been addressed and beyond. Design is solid science, and includes everything needed. Methods are sound and align with hypotheses. Data analysis plan aligns with methods. Reporting results meets data analysis plan and methods. Alignment between arguments, hypotheses, claims, methods, and interpretation of findings.
Team presentations grading

<table>
<thead>
<tr>
<th>Criteria</th>
<th>0 marks (Fail)</th>
<th>8 points (Poor)</th>
<th>17 points (Good)</th>
<th>25 points (Excellent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization</td>
<td>Bad structure. Did not follow outline at all, most areas not covered.</td>
<td>Minimal structure. Mostly not follow outline, and much areas left uncovered.</td>
<td>Good structure. Generally followed outline, covered most areas.</td>
<td>Excellent structure. Followed outline strictly, and covered all areas. Presentation is smooth, polished and organized; flows well.</td>
</tr>
<tr>
<td>(areas = high level)</td>
<td>Presentation is very disorganized; little flow; vague; difficult to understand.</td>
<td>Presentation is confusing and disorganized in a number of places, disconnected or choppy; take some effort to follow.</td>
<td>Good structure. Generally followed outline, covered most areas.</td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Does not reflect understanding of project aim/ideas; Points not clear; irrelevant information; listeners gain nothing/little. Did not cover or mistaken on most of the needed components.</td>
<td>Reflect minimum understanding of project aim/ideas; Information is confusing in places; too much or too little information; listeners gain a few insights. Missed or inaccurate on many of the components.</td>
<td>Reflect decent understanding of project aim/ideas; Sufficient information; many good points made; some areas lacking; listeners gain adequate insight. Covered most components well.</td>
<td>Reflected excellent understanding of project aim/ideas; Abundance of material; points clearly made; evidence supports; listeners gain good insights. Excellent cover of components.</td>
</tr>
<tr>
<td>(components = low level)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simplicity, conciseness, delivery, use of communicati on Aids</td>
<td>Overcomplicated, not concise and unclear No figures or visual aids (tables). Overuse of jargon. Lay audience cannot follow or understand. Communication aids poorly prepared or nonexistent.</td>
<td>Not simple, clear, or concise enough. Minimal use of figures or visual aids (tables). Use of jargon. Communication aids marginally prepared; do not support presentation well.</td>
<td>Fairly simple, clear, and concise. Good use of figures and visual aids (tables, etc.). Professional communication aids, but not varied; may use too many or too few.</td>
<td>Clear, simple, and concise. Appropriate, varied, and professional communication aids. Excellent use of visual aids rather than text.</td>
</tr>
<tr>
<td>Delivery</td>
<td>No effort/coordination. Presenters are uncomfortable; pace is rushed; style is distracting and annoying ' noticeable use of filler words (uhhs, likes, umms) or pauses.</td>
<td>Minimal effort/coordination Presenters are somewhat uncomfortable or nervous; noticeable use of filler words (uhhs, likes, umms) or pauses.</td>
<td>Good effort/coordination Presenters are general comfortable; somewhat polished; minor problems.</td>
<td>Excellent effort/coordination Presenters are comfortable; presentation flows smoothly.</td>
</tr>
</tbody>
</table>

Overall Score 100

Evaluators are instructed to:
1. Avoid outcome bias. Ignore results. Whether the replication “worked” or not should not be a factor.
2. Clarity is key. Would a stranger to the project be able to understand the presentation and the findings?
Review piece - Cognitive constraints in Science piece manuscript

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Excellent</th>
<th>Good</th>
<th>Poor</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content and comprehensiveness</td>
<td>Reflected excellent understanding of the theme and adhered to that throughout the chapter. Included a multitude of relevant references and disseminate ideas in an organised manner. Showed understanding of open-science, and addressed replication crisis and its effect in a sensible and comprehensible way for the public.</td>
<td>Reflected decent understanding of the theme; Included a great deal of references that supported the claims made. Showed understanding and comprehension of open-science and replication crisis. Provided good solutions to the field.</td>
<td>Reflected incomplete understanding of the theme, or open-science or replication. Information is confusing; too much or too little information without a clear idea of what evidence to include. Inaccuracy on many of the components.</td>
<td>Did not reflect understanding of theme. Mistaken concepts. Points were not made clear; irrelevant evidence.</td>
</tr>
<tr>
<td>Depth of analysis</td>
<td>Able to give in-depth and logical analyses based on the evidence of references. Showed extensive integration of the content of articles. Provided useful insights for improvements of open-science. Discussed strengths and weaknesses of each suggestion and direction.</td>
<td>Able to give some useful insights based on the current situation with the references. Intergrated the ideas and demonstrated some critical thinking and evaluation of the articles.</td>
<td>Analysis was barely based on the evidence of the references. Have only summarised the references without integrating the contents. Barely provided insights, not necessarily in-depth.</td>
<td>Writing is entirely descriptive; simply summarising the articles without provision of in-depth analysis.</td>
</tr>
<tr>
<td>Organisatio n</td>
<td>Excellent structure. Followed outline strictly, and covered all components. Clearly labeled sections. The writing of the report was smooth, polished and organised; flowed well. Showed consistency amongst all sub-sections</td>
<td>Good structure. Generally followed outline, covered most components. Clearly labeled sections. Writing of the report flows smoothly with occasional confusion or rough patches between ideas.</td>
<td>Minimal structure. The outline was minimally followed, and many components were uncovered. Writing of the report is confusing and disorganised in a number of places, disconnected or choppy; take some effort to follow.</td>
<td>Bad structure. Did not follow outline at all, most components were not covered. Writing is to a highly extent disoriented; vague; difficult to understand.</td>
</tr>
<tr>
<td>Style</td>
<td>All writing, labels and figures strictly followed APA style, including in-text citations and the reference section.</td>
<td>Minor glitches complying to APA style, minor issues with either in-text referencing/reference s, graphs or tables.</td>
<td>Apparent glitches. Tables and figures did not necessarily comply to APA style. Issues with in-text citations and referencing.</td>
<td>Did not follow APA style. Problematic reporting of tables and figures.</td>
</tr>
</tbody>
</table>
Peer review grading

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Excellent</th>
<th>Good</th>
<th>Poor</th>
<th>Fail</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation, content and comprehensive ness (how you presented it)</td>
<td>Constructive and supportive</td>
<td>Mostly constructive and supportive</td>
<td>Occasionally constructive and supportive</td>
<td>Overly critical and negative</td>
<td>/30</td>
</tr>
<tr>
<td></td>
<td>Supporting reasons, suggestions, references, or examples, provided for each point</td>
<td>Supporting reasons, suggestions, references, or examples, provided for some points</td>
<td>Supporting reasons, suggestions, references, or examples, provided for a few points</td>
<td>Supporting reasons, suggestions, references, or examples, not provided for points</td>
<td></td>
</tr>
<tr>
<td>Clarity, simplicity, conciseness, and delivery</td>
<td>Clear, simple, and concise</td>
<td>Mostly simple, clear, and concise</td>
<td>Occasionally simple, clear, and concise</td>
<td>Overcomplicated or unclear</td>
<td>/20</td>
</tr>
<tr>
<td>Feedback / Contribution (what you presented)</td>
<td>Excellent points made, providing useful insight and clear direction for improvement</td>
<td>Good points made, providing some useful insight and some clear direction for improvement</td>
<td>Points barely provided insight, with little to no feedback</td>
<td>Summarising the assessment without providing insight/feedback, or points are irrelevant</td>
<td>/40</td>
</tr>
<tr>
<td></td>
<td>(Clear supporting reasons, suggestions, references, or examples)</td>
<td>(Somewhat clear supporting reasons, suggestions, references, or examples)</td>
<td>(Vague/unclear supporting reasons, suggestions, references, or examples)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation, navigation, flow</td>
<td>Excellent structure.</td>
<td>Good structure.</td>
<td>Minimal structure.</td>
<td>No or bad structure.</td>
<td>/10</td>
</tr>
<tr>
<td></td>
<td>Covered all peer review materials.</td>
<td>Covered most peer review materials.</td>
<td>Many peer review materials were uncovered.</td>
<td>Little to no peer review materials covered.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Writing is smooth, polished, and organised; flows well</td>
<td>Writing is mostly smooth with occasional confusion or rough patches between ideas</td>
<td>Writing is confusing and disorganised, or disconnected in several places, requiring some effort to follow</td>
<td>Writing is disoriented, vague, difficult to understand, to a high extent</td>
<td></td>
</tr>
</tbody>
</table>
Team contract

<table>
<thead>
<tr>
<th>Component</th>
<th>Excellent</th>
<th>Good</th>
<th>Poor</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground rules</td>
<td>Covered and considered a reasonable range of general, communications and meetings, and decision making rules. Rules developed are clear and reasonable.</td>
<td>Covered and considered some general, communications and meetings, and decision making rules. Rules developed are mostly clear and reasonable.</td>
<td>Covered and considered only one aspect of rules (general, communications and meetings, and decision making rules). Rules are seldom clear and reasonable.</td>
<td>Did not cover any aspect of rules (general, communications and meetings, and decision making). Rules are not clear and not reasonable. Or No ground rules developed at all.</td>
</tr>
<tr>
<td>Team/group roles</td>
<td>Roles within each team/group are clear and concise.</td>
<td>Roles within each team/group are mostly clear and concise.</td>
<td>Roles within each team/group are seldom clear and concise.</td>
<td>Roles within each team/group are overcomplicated or unclear. Or No roles are designated.</td>
</tr>
<tr>
<td>Premortem</td>
<td>Reasonable and logical potential issues identified, with thorough understanding why these issues may occur. Clear and reasonable intervention provided for each possible problem.</td>
<td>Potential issues identified are mostly reasonable and logical. Understanding of why these issues may occur are generally good. Interventions provided are mostly clear and reasonable.</td>
<td>Potential issues identified are minimally relevant and reasonable, and the understanding of why these issues occur requires some effort to follow/are unclear. Interventions provided are vague/unclear.</td>
<td>No premortem is provided. Or Issues stated are irrelevant, and there is no understanding of why these issues may occur. No intervention is suggested.</td>
</tr>
<tr>
<td>Semester long plan</td>
<td>Excellent structure, with reasonable and logical timeframe between coursework. Team/group member workload in the plan is shown very well and is clear.</td>
<td>Good structure, with a relatively reasonable and logical timeframe between coursework. Team/group member workload in the plan is shown well or generally clear.</td>
<td>Minimal structure, with unreasonable and illogical timeframe between coursework. Team/group member workload in the plan is poorly shown.</td>
<td>No plan or bad structure, with little to no timeframe between coursework. Team/group member workload in the plan is not shown or unclear.</td>
</tr>
<tr>
<td>Team weekly schedule</td>
<td>Schedule is clear, concise, and uncomplicated.</td>
<td>Schedule is generally clear, concise, and uncomplicated.</td>
<td>Schedule is generally unclear, wordy, and complicated.</td>
<td>There is no schedule Or Schedule is unclear, wordy, and complicated.</td>
</tr>
</tbody>
</table>

/25 /20 /25 /20 /10
General guidelines

Assignment submission
All assignments will be done with Google Docs. To be clear, all work should be conducted on the Google Doc from the very beginning (rather than imported at the end from a Microsoft Word document). This is to allow automatic backup, versioning, and direct access by instructor, tutors, and group members.

Submit by creating an edit link, adding the link to your document, exporting the document to a Word file and submitting the file on Moodle. Feedback by the instructor will be given directly on the Google Doc.

IMPORTANT: Make sure that the Google Doc has public viewing with commenting permissions, and check that you can access the document even in incognito mode when you are not logged in. Please also make sure that the instructor has full editing permissions (giladfel@gmail.com).

Assessment feedback and consulting
All written assignments will be marked and returned to students within 3 weeks after submission. Students are welcome to consult the instructor and the tutors anytime during the semester.

Moodle guest account
The Moodle will serve as the course website.
Guest account:
Username: psyc3052_1a_2021_guest / psyc3052_1b_2021_guest
Password: Psyc!3052 (case sensitive; same password for both guest accounts)
Our Wellbeing

Your health, happiness, and wellbeing matter greatly to me. This course is intense, yet I will do my best to ensure that our course will be a safe and all-around positive learning experience. The purpose is to inspire and motivate you, to get you excited about science and contributing with scientific insights, not to overwhelm you. You and your learning experience is the top priority, not grades or outputs.

Along these lines, I have a few thoughts for us:

You are the priority

Most of the students do well in this course. However, there are students who report feeling lots of pressure. Many times communicating these to me, the instructor, can help resolve those. There is always a way we can find to ensure your well being. You are more important than this course.

Also, if you can't make it to class because of a family, illness, or career-related reason, it is perfectly okay, just let us know. It's absolutely okay to miss classes. Tell me or the TA what you need, we'll do our best to adjust.

Work/study-life matters. Life should be more than just about studies. If you feel that our course is standing between you and work life balance, please communicate that to me, even anonymously, and I’ll do what I can to adjust.

Informality and comfort

I do not believe in hierarchy, so I don’t practice it, but my first priority is that you feel comfortable. For me, there's no need for formality with titles and last names, unless you feel you want to. I’m happy for students to talk to me as if I’m a collaborator, and refer to me by my first name.

Your voice, your needs

Your voice and perspective are important and vital to everyone’s learning experience. Please participate, share your perspective, either in class or on Slack.

We all bring very different lenses and perspectives to the table. Your voice, your experiences, and how you wish to be addressed, is unique and precious, and our classroom is a space where we will recognize and respect each other's position.

At times, we will also disagree on issues. In those cases, let us disagree respectfully and in a manner that enables a happy end, by which I mean, that we and the other person can walk away from class feeling good about ourselves/themselves.
Policies

Contacting the instructor

I try to make the syllabus very comprehensive, to address any possible issues, so it is very likely that most of your questions are answered in either the syllabus or the various documents in the Moodle.

Still, if there's something not on the syllabus, please post your questions on Slack. I’ll answer your questions there. If you have personal issues not related to course/projects, feel free to contact me/TA directly.

Before you do, please read "How to Email Your Professor (without being annoying)" , and use this suggested template (fill in all the areas with numbers):

To: gfeldman@hku.hk (Please do not email instructor in any other emails)
From: myname@connect.hku.hk
Subject: PSYC3052A/B: [full name 1] - [write clear topic title 2]

Dear [Fili],

My name is [Enter your full name 3] and I am a student in your PSYC3052 Advanced Social Psychology course. The project I am working on is [Enter project name 5]

This is the question I have or the help I need:
[write the question/problem you're facing 6].
I’ve looked at the syllabus and the Moodle/Slack and at my notes from class and online and I asked someone else from the class [this is to confirm that you did the minimum required before contacting instructor 7], and I think [This Is The Answer] [write what you think is the answer 8], but I am still not sure.

This is the action I would like you to take or the request I have:
[write your request 9].

Thank you/Best regards [polite sign off 10],
[write your full name again here with LAST NAME IN CAPITAL LETTERS 11]
Requests for reference letters

Please see my policy on reference letters based on undergraduate course work in the following link: http://wiki.mgto.org/doku.php/requesting_a_reference_letter_from_me

English is the official language

The official language of instruction and communication is English. To ensure that everyone feels included, both instructor and students, please refrain from speaking any other language in the classroom. Please address the instructor or the tutors only in English, in and outside of the classroom.

Academic honesty

Academic dishonesty will not be tolerated. Any student who engages in any form of academic dishonesty (e.g., cheating on exams, plagiarism, interfering with grading) will receive a grade of F in this course and will be reported to the Department/Faculty Office/University Disciplinary Committee for further disciplinary action. There will be no exceptions. If you are not sure what constitutes the academic offense of plagiarism, checkout the webpage at http://www.hku.hk/plagiarism and check the new website and new Policy on Student Plagiarism in Undergraduate and Taught Postgraduate Curricula.

Plagiarism

A softcopy is required for all written assignments. The softcopy will be checked for plagiarism against a database of articles, books, webpages, and essays submitted by students at HKU and other universities. No credit will be given for an assignment that contains plagiarized materials. Further penalties will be applied. These penalties include a zero mark for participation in course tutorials and a zero mark for the course. Plagiarism will also be reported to your Faculty for further disciplinary action.

Feedback Policy

Every assignment in this course has two stages, see above for information. The feedback is given on the first stage submission so that you can learn and improve for the second stage. Students can expect to receive feedback within three weeks after submitting assignments for the first stage only. We will not be able to provide an additional round of feedback for your second stage submission.

Whenever needed - Tutorial sessions are meant for you to meet with your TA and receive guidance and feedback beyond that provided on your submissions. Use those to help us help you, and to better understand how we assess your work.

Late assignments

Unauthorized late assignments will be penalized by 10% of the score for each day following deadline (including Saturday and Sunday). A day late starts one second following submission date/time. To be clear: For components that are submitted in stages (such as pre-registration) this policy applies for each of the stages and will influence the score of the last stage. Meaning, submitting late to stage 1 of the pre-registration will affect the score of the final pre-registration per the policy above. That said, these are strange difficult times, and so I will aim to accommodate you and be reasonable given course schedule dependant on other people (peer/external reviewers, etc.). Please reach out to me long before the deadline so that I can work out how to deal with the challenges you’re facing. Please do not wait till submission time, that would make your late assignment “unauthorized” per the above.
Incomplete assignment submissions

Students are responsible to verify their submissions and make sure these are accurate and complete in accordance with submission instructions. We simply cannot afford the time to run after students to seek out materials. Incomplete assignments may not be checked at all and grade will be penalized by up to 20% of the score if TA follows up on submission to obtain further details. Response to TA requests on incomplete submissions is expected within 1 calendar day, or assignment will not be accepted.

Department seminars

In response to a comment from the review panel on students’ feedback last year that students would like to know more about cutting edge, contemporary research while psychology’s capstone courses (i.e. advanced lab courses) have limited space and very competitive, it’s then discussed at the Departmental Teaching and Learning Committee and reported at the Departmental Meeting that students enrolled in the capstone courses, from the academic year of 2018/19, are required to attend the Seminars in compulsory manner.

(This is not the instructor’s requirement and has nothing to do with the course and/or instructor. This is directly from the department level, which requires me to enter this here. If you have any inquiries about this requirement, please contact Joey Lau at ugpsye@hku.hk.)