PSYC2071: Judgement and decision making
Course Outline (2020-21 Autumn Semester)

Important: All lectures in this semester are recorded and will be shared publicly online.

Lecture: Thursday 13:30 – 15:20; Remote ZOOM (if not remote MWT3)

[If you’re interested, you’re also welcome to visit Advanced Social Psychology (syllabus):
 ● Section 3052B: Tuesday 16:30 - 18:20; Remote ZOOM
 ● Section 3052A: Wednesday 12:30 – 14:20; Remote ZOOM]

Tutorials:
 ● Monday 10:30-12:20 (TBD)
 ● Thursday 10:30-12:20 (TBD)

Please ask all course/syllabus related questions on our Slack (channel: #questionsaboutcourse). We will answer it all there for all to see and learn. Please only email us when there are personal issues that relate only to you.

Contact details

Instructor: Gilad (Fili) FELDMAN
Office: Jockey Club Tower 6.22
Hours: Wednesday, 15:30-16:30 (email first)
Email: gfeldman@hku.hk

Tutor: Qinyu XIAO
Office: Jockey Club Tower 6.41
Hours: TBD (email first)

Tutor: Siu Kit YEUNG
Office: Jockey Club Tower 6.41
Hours: TBD (email first)

Supporting tutor: Kristy CHOW
Office: Jockey Club Tower 6.18
Hours: TBD

Course Objectives

The purpose of this course is for students to gain an in-depth academic understanding of psychological science focusing on the domain of judgment and decision-making.

After taking this course, students will:

1. Gain an academic overview of main research themes in judgment and decision-making.
2. Summarize, analyze, reflect, and apply classic experiments and findings in decision-making.
3. Articulate process and findings, both orally and in writing, with discussion of evidence and its implications for the academic field and in everyday life.
4. Experience and lead, hands-on, high-quality academic research using the most recent methodological advances in psychological science conducting a pre-registered
replication and extension of a classic study in social cognition / judgment and decision-making.

a. In-depth analysis of a published academic article
b. Assessment of experimental scientific methods and evidence (effect-size, confidence-intervals, power, and p-values)
c. Pre-registration plan
d. Data analysis
e. Registered Report Stage 1 (as an academic submission)

Learning Outcomes

1. Gain knowledge and reflect on classic academic findings in judgment and decision-making. Identify and describe common judgment and decision heuristics and biases.
2. Gain an overall broad understanding of several research streams in judgment and decision-making. Understand and explain the heuristics and biases approach to human judgment and decision making.
3. Understanding and implementing open-science.
4. Develop ability to contemplate and analyze judgment and decision-making academic research.
5. Exercise critical mindset and basic skills in interpreting and communicating research reports.
6. Understand and conduct a pre-registered replication and extension of simple classic experiments in judgment and decision-making.
7. Coordinate and cooperate with other students to achieve common academic goals and successfully conclude academic projects.
8. Write high-quality publishable research articles and communicate research findings in presentations.

Reasons why you should NOT take this course

1. If you dislike or are skeptical about psychology, you may not like this class.
2. If you're looking for an easy course. Be warned, this is a very demanding course, and we will work under very strict criteria of establishing scientific evidence requiring high-level of scientific understanding and thinking.
3. If you think psychology is a "soft science" or "intuitive" and/or that psychology classes are "easy classes", then you're in for a surprise. This will require a scientific mind and adhering to the most up-to-date scientific standards.
4. If you do not care about academic research or are hesitant or reluctant to conduct academic research. This is an advanced research undergraduate course that aims to introduce you to the scientific understanding of judgment and decision making, and
this will involve conducting a state-of-the-art research project. We will provide you with resources and examples, and aid you in the project, but it will depend on your ability to do research to get an in-depth understanding of the human mind from a critical academic perspective.

5. If you prefer passive learning, if you do not like self-study, or if you expect learning to originate only from the instructor. I will guide you, provide support and assistance, but learning in this course is student focused and student driven. It will depend on your conducting self-study and pushing yourself to master needed skills, fully engage in academic thinking, and do the required work.

6. If you need high structure and do not tolerate uncertainty. There will be uncertainty in this course, and things will not always be clear upfront. It will be up to you to raise questions, seek help, and overcome difficulties as they arise. I will do whatever I can to support you, but I am joining you in this journey with no certainty of how this journey will turn out or what the outcome will be.

7. If you dislike quantitative research and have an aversion to statistics. Academic research in psychology requires basic understanding of statistics and I will assume that you have mastered the basics of statistics and are capable of mastering further needed skills given guidance.

Things to consider about the course

1. To give you a heads-up, for you to determine if there's a fit and to address any possible future misunderstandings - **this is a very demanding research-focused course requiring in-depth readings on judgment and decision making in the domain of social psychology with a very comprehensive academic research course project**.

2. Everything we do in this course, everything (reports, presentations, class notes, etc.), will be shared not only to your TA and instructor, but also to all your classmates, and the entire world. **Everything we do will be shared with the academic community on the Open-Science Framework**.

3. If you took other courses about judgment and decision making (e.g., CCST9027 "Science of Irrational Thinking"), you may find some of the course context repeating some of the themes and experiments covered. Since this is an advanced class, we aim to build on and extend beyond that course, but some content is likely to overlap. If you did take that course, please inform our TA.

4. If you took my previous courses about social psychology (e.g., PSYC2020 "Fundamentals of Social Psychology"), you may find some of the course context repeating some of the themes and experiments covered. Since this is an advanced class, we aim to build on and extend beyond that course, but some content is likely to overlap. If you took that class with another instructor, no worries, overlap is likely going to be minimal. If you did take that course, please inform our TA.

You are invited to browse all materials, by both instructor and students, shared on the Open Science Framework from courses in previous years: http://mgto.org/teaching-courses/
Teaching Philosophy

Why am I teaching this way?

See the following references:

Why are we doing replications and extensions Registered Reports in this course?

If you're not sure you understand the point of conducting pre-registered replication in undergraduate classes, then I suggest a few readings on the topic.

- Teaching Replication in Psychology: A Guide for Teachers and Students (OSF project)
- Collaborative Replications and Education Project (CREP)
- Listen to the student’s perspective: Open Science Talk podcast session on student's perspective on Open Science – and specifically replication studies. With Kristoffer Klevjer.

About replications

- Nosek, B. A., & Errington, T. M. (2020). What is replication?. *PLOS Biology*, 18(3), e3000691. https://doi.org/10.1371/journal.pbio.3000691

If you wish to see me explain this in depth, then there are recorded video lectures about me explaining open science and what we are doing at University of Hong Kong, see my webpage about Open Science.
Structure

Students will form groups (2 students) and two groups will form a team (overall, 4 students). This team will work together on the following:

1. **Registered Replication Report assessment (RRR)**: Read, analyze, summarize, and present a RRR (list below).
2. **Replication and extension Registered Report Stage 1**: Teams of 2 groups will work on a replication and extension Registered Report Stage 1 science project. Each of the two groups will work separately and independently to complete a project (see “projects” below for info), and the two groups will peer-review one another and present together. The groups will, however, do the final presentations together. The separate work is important so that the two teams can then check each other to find possible flaws, help each other improve, and suggest different extensions.
3. **Phenomenon review piece**: Write an article submission manuscript aimed at reviewing one classic phenomenon in judgment and decision-making.

Assessment Components

1. **RRR assessment (team score) 25%**
 a. RRR peer-review (2 reviews): 5% each = 10%
 b. RRR group report: 10%
 c. RRR class presentation: 5%
2. **Replication and extensions projects: (group score) 50%**
 a. Introduction including target article analysis (effects + power) + Qualtrics survey design: 20%
 b. RE peer review (1 review): 10%
 c. RE Registered Report: 20%
3. **JDM topic review manuscript (team score) 25%**
 a. TR peer review (2 reviews): 5% each = 10%
 b. TR report 10%
 c. TR presentation 5%
Schedule

<table>
<thead>
<tr>
<th>Cl</th>
<th>Date</th>
<th>Topic</th>
<th>TA</th>
<th>Tasks due end of week (Sunday 11:59pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>03/09</td>
<td>Instructor session on open-science/pre-reg/extensions</td>
<td></td>
<td>Signup for HKU Qualtrics account: https://hku.qualtrics.com/</td>
</tr>
<tr>
<td>2</td>
<td>10/09</td>
<td>Judgment & Decision making: Introduction lecture #1</td>
<td></td>
<td>Deadline 13/09 11:59pm: MANDATORY for course enrollment: Complete quiz on the syllabus and open-science lecture</td>
</tr>
<tr>
<td>3</td>
<td>17/09</td>
<td>Judgment & Decision making: JDM and game theory #1</td>
<td>T1 Science assessment task</td>
<td>Deadline 20/9 11:59:</td>
</tr>
<tr>
<td>4</td>
<td>24/09</td>
<td>JDM and game theory #2</td>
<td>T2 Effect size and power analysis</td>
<td>Deadline 27/9 11:59: RRR Assessment report submission</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optional Sep 21th 1pm: Registered Reports/pre-registration HKU workshop</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optional Sep 28th 1pm: JAMOVI HKU workshop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>01/10</td>
<td>Public holiday: No class</td>
<td>T3 Research design: Replications and extensions (pre-recorded or Monday session)</td>
<td>Deadline 4/10 11:59: RRR Assessment peer review</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>08/10</td>
<td>JDM and game theory #3</td>
<td>T4 Qualtrics survey best practices</td>
<td>Deadline 11/10 11:59pm: RRR Assessment final submission</td>
</tr>
<tr>
<td>7</td>
<td>15/10</td>
<td>Reading week No class</td>
<td></td>
<td>Deadline 18/10 11:59pm: Mid term team/group evaluations</td>
</tr>
<tr>
<td>8</td>
<td>22/10</td>
<td>Social Cognition</td>
<td>T5 Data analysis plan JAMOVI/R + Simulating data</td>
<td>Deadline 25/10 11:59pm: Replication + Extension Part 1</td>
</tr>
<tr>
<td>9</td>
<td>29/11</td>
<td>Morality/ethicality</td>
<td>T6 (open tutorial TBD)</td>
<td>Deadline 1/11 23:59pm:</td>
</tr>
<tr>
<td>9</td>
<td>05/11</td>
<td>Experimental Philosophy</td>
<td></td>
<td>Deadline 8/11 23:59pm Replication + Extension Part 2</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
<td>Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 10/11 | Nudging and practical implications | Deadline 15/11 23:59pm
Replication + Extension Part 2 peer review
Participate in PRETEST |
| 19/11 | Course JDM summary | Deadline 22/11 23:59pm
Review piece submission |
| 26/11 | Presentations | Deadline 29/11 11:59pm:
Review piece peer review submission |
| 03/12 | No class | Deadline 06/12 11:59pm:
End of term team/group evaluations |
| 10/12 | No class | Deadline 13/12 11:59pm:
Replication + Extension Part 2 final submission
Review piece final submission |
Collaboration and resources

Collaborative course summary
All students will work on a collaborative Google Doc summarizing all the readings and class activity: https://mgto.org/psyc20712020coursesummary

Communication and help
We have a slack channel: https://hku2020psyc2071.slack.com

Click on this invite link to join the course Slack channel.

You can use this Slack workspace to discuss topics with other students, and ask TA and instructor questions about the projects/tasks. Emails should be reserved to personal issues only. This way, all students can see all help provided to all others, and can help one another do better.

Course materials
Course materials are shared on the Open Science Framework.
Group projects: Replications and extensions
Stage 1 Registered Report

Important resources/links for your projects:

1. Cloud drive: Materials for the projects
2. Collaborative guide: Pre-registered replication project
3. Collaborative guide: R/JAMOVI/JASP
4. Collaborative guide: Designing extensions guide
5. Collaborative guide: Effect size, confidence intervals, and power analyses guide.
6. Collaborative guide: Peer review
7. Collaborative guide: Qualtrics
8. HKU mass replication project webpage
9. Updating the academic community about our replication projects (ResearchGate)

Students will conduct replication and extension Stage 1 Registered Report of classic findings in judgment and decision-making. Students will be randomly assigned an experiment in a classic article and will follow a structured procedure to attempt a replication with a simple extension.

Each classic article will be the target replication article for two groups of two students (henceforth: team. Please note: group = 2 students, team = 2 groups). Each group will work independently on the same article without any information-sharing or collaboration with the other group in the team. This method will be used to educate students about different perspectives on conducting replication and analysis of the same article. The two groups will peer review one another's work, and will use the process to improve on their own work. The idea is not to have identical outputs, but for each of the students to do the best they can on their own and then compare their own approach to that by the other student.

The students will be responsible for designing a replication Qualtrics survey, analyzing the article, writing the pre-registration plan, conducting the data analysis on randomly generated dataset, writing a Registered Reports Stage 1, and presenting their projects.
Project process outline

Adding extensions to replication

Groups are expected to design extensions on the replications (bonus points awarded). How? see Collaborative guide: Designing extensions guide for more detail.

Sharing and open science

The core elements of good science are openness, transparency, and community. By opening up our research in terms of process, materials, data, analysis, and conclusions, and by sharing our thought process with others in the scientific community, we are promoting learning and cooperation and we increase the chances of conducting high-quality research. Some researchers, and possibly students, may feel reluctant to share their outputs, either because they feel shy, lack confidence, or are possessive of their own materials. In our projects, I ask that you join me in overcoming this mentality in the name of science and learning. By opening up and sharing what we do, we can help each other learn and maximize the potential of our projects.

All your work will be shared with others. First, with your fellow students, and finally with the rest of the academic community. The TAs and instructor will do their best to work together with you to result in the highest quality outputs.
Academic journal submission and coauthorship

Our goal with this project is to share our insights with the academic community. The formalized way of doing that is summarizing the findings in a manuscript, publishing this as a pre-print, and submitting that as coauthored work to a journal for peer-review. We will aim your projects to become a journal submission to publicize the results of your hard-work. Unless there are unexpected issues, the plan is for all of the student work in this course to be submitted as academic manuscripts, meaning that - by default - you will be coauthors, as determined by the instructors based on level of contribution. You may decide not to join as coauthors or not to have your work included in a journal submission, but in such a case you must communicate that to the instructor early on and indicate this clearly on your reports.

Meaning, that by taking this course and taking part in this project you agree to have your work shared with the academic community and the public, and to be a coauthor on a submission based on your work. If you wish to withdraw from that, then please indicate clearly in ALL your submissions that you do not want to be a coauthor in a journal article submission based on your work or do not wish for your projects to be included in a journal submission.

Can student reports really be published? Yes! Please visit our main page to see the status of publishing the reports from previous years. At the end, we hope that all students’ work will end up in academic journals. Even for those that will not, they will be shared as preprints and will have citable DOIs. You could and should be proud of this work, and add those to your list of academic achievements.

Analyses

It is strongly recommended that you use **R/Rmarkdown** for all your effect-size calculations and data analyses. R is the future of stats, and is an important skill for you have in the job market will be beneficial for you in the job market beyond academia.

If you don’t know R, that could be a bit challenging, so it is strongly recommended that instead you use **JAMOVI**, which looks a bit like SPSS, much more powerful than SPSS, and is open-source/free and runs on R.

Our TA tutorials will focus on JAMOVI.

See our [JAMOVI collaborative guide with lots of guides/videos/resources](#).

Why choose R:

- **SPSS is dying. It’s time to change.**
- **Popularity of Data Science Software** (a bit outdated, from 2015, but the trend became even stronger in recent years)
- **The Impressive Growth of R**

Resources:

- [JAMOVI / JASP/ R collaborative guide](#)
- [Effect size and CIs calculations / power analyses collaborative guide](#)
- [JAMOVI workshop & resources cloud folder](#)
- [R/Rmarkdown workshop & resources cloud folder](#)
Team final project presentations

The two groups working to replicate the same target article will present together at the end of the course. They will integrate insights from their independent teams to give an overall analysis on the replicability of the target article.

Each team will have no more than 10 minutes, strictly observed with a timer (I will stop you when time is up, regardless of whether you're done or not). There will be no time for questions from the audience, but I will either comment, ask a question, or add something. All students should have equal time, I strongly recommend you rehearse this and make sure timing and flow is right, and that no one person is over-dominant or unheard.

The presentation should include:

1. Brief overview of the original article main hypothesis, experimental design of the main effect of interest, and findings regarding the main hypothesis. Do try and make this visually attractive and interesting, this is your one chance to explain your article to your audience.
 (suggested time - 3 min)
2. Brief review of the literature following the target article. What impact has it had? Were there replications? meta-analyses? etc.
 (suggested time - 1 min)
3. Briefly cover the technical aspects of the replication: calculated effect-size (with confidence intervals), power-analysis, and adjustments made to the experimental design to fit our replication using online samples (MTurk/Prolific). It should mention whether the calculations were the same or different between the students.
 (suggested time - 3 min)
4. Briefly cover the extension you designed. What are you adding? why? what insights do you hope to get?
 (suggested time - 2 min)
5. Main challenges and takeaways from the process, things specific about your project that you learned about the original article, pre-registrations and replication process.
 (suggested time - 1 min)

Additional things to note:

1. This should be a no bla-bla presentation. This needs to be very concise, straight and to the point. There is no time for stories or long explanations. Focus on the bottom line and what's really important, no need for little details, you'll have plenty of space for details in your reports.
2. Anything that you present should include both groups’ analyses together. If there are differences between the two - the differences should be highlighted clearly.
3. Assume your audience knows nothing about your article and only little statistics. Explain things as if you're talking to laypersons. Avoid jargon as much as possible. Clarity is key.
4. Aim for high-level summary slides with little text. Attractive visual displays are far better than text. Do not place text and read off from your slides. Do not assume the audience reads your slides while you talk about something else.
5. Save time. There is NO need to present and/or discuss things you have in common with the rest of the class (replication crisis, sample size, importance of pre-registered replications, what is MTurk, etc.)

Presentation materials used should be submitted on Moodle after the presentation, in PPT/PPTX format. PDF format is unacceptable unless preapproved by TA/instructor.

Students will vote on the best presentation in each class (voting is identified, not anonymous), and presenters of the 2 best presentations will receive a 10% bonus on their presentation grade.

Peer review

Groups conducting a replication and extension of the same target article will review each other’s work. See our peer review template/guide for these reviews.

Teams will review reports from two other teams for RRR assessment and opinion piece. Templates will be provided during the semester.

Peer review will follow academic standards for providing positive constructive feedback on ways to improve, and each of the peer reviews will be graded.
Replication Targets 2020-1

Please note: All PDFs with instructions and highlights about what to do are posted on a cloud folder.

Environment:

Study: Study 1
Design: 2 conditions (offset versus tax) and 1 demographic variable (political affiliation).
Summary: The cost framing of environment in offset versus tax changed preferences for self-identified Republicans and Independents, but did not affect Democrats’ preferences.
Citations: 352
Note: Please implement the improvement in experimental condition from Study 2. Since this is simpler than the other projects, for this project I am expecting 2 extensions by each group (preferably two different types of extensions), rather than just 1.
Tutor: Siu Kit Yeung

Organ donations and saving for retirement:

Study: Combine Experiment 1, Experient 2, and Experiment 3, random order
Design: Experiment 1 is one-sample, Experiment 2 is 2 conditions, Experiment 3 is 2 conditions.
Summary: Examining default effect in organ donations and saving for retirement. Default perceived as attitudes and/or recommended course of action.
Citations: 372
Tutor: Siu Kit Yeung

Risk:

Study: Combine Study 1, Study 2, and Study 3, random order
Design: Study 1 is 2 conditions (between) x 2 (within), Study 2 is 2x2 (between), Study 3 is 1x3 (between)
Summary: Affective rather than psychophysical deconstruction of the weighting function resting on two assumptions. First, preferences depend on the affective reactions associated with potential outcomes of a risky choice. Second, even with monetary values controlled, some outcomes are relatively affect-rich and others relatively affect-poor.
Citations: 923
Tutor: Siu Kit Yeung
Environment:

Study: The two lab experiments, sections 3.3 and 3.4
Design: 3.3 is 3 conditions, 3.4 is 2 conditions. both between-subject design.
Summary: Format of information presentation drastically affects the choice of electricity. people use the kind of electricity that is offered to them as the default.
Citations: 453
Tutor: Siu Kit Yeung
Team Project: Registered Replication Report assessment

Students will work in teams of 4 to work on a Registered Replication Report (RRR). This will include a presentation, and a team report analyzing the replication.

Replication assessment report

Please use our template for your replication assessment reports for your reports. For your group/teams, please make a copy of the template Google Doc, and work on that.

General description of the task (details in the template link above):
A team will assess the quality of a classic article and then the replication we conducted at HKU in the previous semesters. This will involve a hands-on analysis of the replication and reflect on the quality of the target article and the replication. To do that, you will need:
1. The original article
2. The replication article
3. The replication pre-registration, data, and code

Your report and presentation shall cover the following topics (this is for overview purpose only, see details in the template):
1. What is the effect/phenomenon
2. Why was it important to replicate?
3. Why would it replicate?
4. Why wouldn’t it replicate?
5. Quality of the target original article.
6. Quality of the pre-registration.
7. Quality of the replication report.
8. Did it replicate? how do you know?
9. If results differ - which of the two do you find more convincing? why?
10. What can be improved? Provide constructive realistic recommendations to improve on this replication even further.
11. Lessons learned for your own replication. Reflect on what you learned from this replication attempt for your own pre-registered replication projects?

Indicators used to assess the quality of both target article and the replication:
1. Clarity
2. Transparency and open-science
3. Reproducibility
4. Methods rigor
5. Design (does it fit the hypotheses?)
6. Power (calculate power)

Page limit: No longer than 30 pages (1.5 space, 11font). Preferences for summary/comparison tables and figures over text. Short and concise is strongly encouraged, but this should not come at the expense of comprehensiveness. The limits are set only for the main assessment component of “[Replication article/project]: Replication assessment”. No limit on appendices, intro pages, abstracts, and other added information.
Projects list
For links and materials, visit: https://mgto.org/pre-registered-replications/#preprints

Team Project: Phenomenon review piece

To learn in-depth about a specific phenomenon you will write a review manuscript covering one classic phenomenon in judgment and decision-making in-depth. All phenomenon covered will be chosen from the phenomena covered by the mass replication project and will involve some of JDM’s most influential effects. You will also be asked to cover evidence regarding application in the field and real-life.

Teams will be randomly assigned to a phenomenon, and will follow a provided template for a manuscript on the assigned review paper.

More details will be provided later in the semester.

Grading criteria details

Please see this document for grading criteria used in PSYC3052. The two courses have similar assessment components and identical grading criteria.
General guidelines

Assignment submission
All assignments will be done with Google Docs. To be clear, all work should be conducted on the Google Doc from the very beginning (rather than imported at the end from a Microsoft Word document). This is to allow automatic backup, versioning, and direct access by instructor, tutors, and group members.

Submit by creating an edit link, adding the link to your document, exporting the document to a Word file and submitting the file on Moodle. Feedback by the instructor will be given directly on the Google Doc.

IMPORTANT: Make sure that the Google Doc has public viewing with commenting permissions, and check that you can access the document even in incognito mode when you are not logged in. Please also make sure that the instructor has full editing permissions (giladfel@gmail.com).

Assessment feedback and consulting
All written assignments will be marked and returned to students within 3 weeks after submission. Students are welcome to consult the instructor and the tutors anytime during the semester.

Moodle guest account
The Moodle will serve as the course website.
Guest account:
Username: psyc2071_1a_2020_guest
Password: Psyc!2071 (case sensitive)
Policies

Contacting the instructor

I try and make the syllabus very comprehensive, to address any possible issues, so it is very likely that most of your questions are answered in either the syllabus or the various documents in the Moodle.

Still, if there's something not on the syllabus, feel free to contact me. Before you do, please read "How to Email Your Professor (without being annoying)", and use this suggested template (fill in all the areas with numbers):

To: gfeldman@hku.hk (Please do not email instructor in any other emails)
From: myname@student.hku.hk
Subject: PSYC2071 - [full name 1] - [write clear topic title 2]

Dear Fili,

My name is [Enter your full name 3] and I am a student in your PSYC2071 Judgment and Decision Making course. My TA is [Enter TA name 4]. The project I am working on is [Enter project name 5]

This is the question I have or the help I need [write the question/problem you're facing 6]. I’ve looked in the syllabus and the Moodle and at my notes from class and online and I asked someone else from the class [this is to confirm that you did the minimum required before contacting instructor 7], and I think This Is The Answer [write what you think is the answer 8], but I’m still not sure.

This is the action I would like you to take or the request I have [write your request 9].

Thank you/Best regards [polite sign off 10],
[write your full name again here with LAST NAME IN CAPITAL LETTERS 11]
Requests for reference letters

Please see my policy on reference letters based on undergraduate course work in the following link: http://wiki.mgto.org/doku.php/requesting_a_reference_letter_from_me

English is the official language

The official language of instruction and communication is English. To ensure that everyone feels included, both instructor and students, please refrain from speaking any other language in the classroom. Please address the instructor or the tutors only in English, in and outside of the classroom.

Academic honesty

Academic dishonesty will not be tolerated. Any student who engages in any form of academic dishonesty (e.g., cheating on exams, plagiarism, interfering with grading) will receive a grade of F in this course and will be reported to the Department/Faculty Office/University Disciplinary Committee for further disciplinary action. There will be no exceptions. If you are not sure what constitutes the academic offense of plagiarism, checkout the webpage at http://www.hku.hk/plagiarism and check the new website and new Policy on Student Plagiarism in Undergraduate and Taught Postgraduate Curricula.

Plagiarism

A softcopy is required for all written assignments. The softcopy will be checked for plagiarism against a database of articles, books, webpages, and essays submitted by students at HKU and other universities. No credit will be given for an assignment that contains plagiarized materials. Further penalties will be applied. These penalties include a zero mark for participation in course tutorials and a zero mark for the course. Plagiarism will also be reported to your Faculty for further disciplinary action.

Feedback Policy

Students can expect to receive feedback within three weeks after submitting written assignments and taking each exam.

Late assignments

Late assignments will be penalized by 10% of the score for each day following deadline (including Saturday and Sunday). A day late starts one second following submission date/time.

To be clear: For components that are submitted in stages (such as pre-registration) this policy applies for each of the stages and will influence the score of the last stage. Meaning, submitting late to stage 1 of the pre-registration will affect the score of the final report per the policy above.
Incomplete assignment submissions

Students are responsible to verify their submissions and make sure these are accurate and complete in accordance with submission instructions. We simply cannot afford the time to run after students to seek out materials. Incomplete assignments may not be checked at all and grade will be penalized by up to 20% of the score if TA follows up on submission to obtain further details. Response to TA requests on incomplete submissions is expected within 1 calendar day, or assignment will not be accepted.